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The Use of the GRID Program in the 3-D QSAR Analysis of a Series of 
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The use of GRID in the 3-D QSAR analysis of a series of calcium-channel agonists is described. 
Partial least-squares analysis of GRID maps showing the interaction energy between an alkyl 
hydroxyl probe and a series of agonists in 3-D space generated a predictive quantitative model of 
the variation of biological activity. The macroscopic descriptors CLOGP and CMR were included 
in the analysis, and the importance of appropriate block scaling is highlighted. The discussion 
highlights the interpretation of the resulting regression maps, and the steric, electrostatic, lipophilic, 
and hydrogen-bonding preferences of the calcium-channel receptor are identified. 

Introduction Chart 1 

In general, descriptors used in QSAR studies only model 
the magnitude, not the directional preferences of a 
particular physical property. Traditional QSAR studies 
have used descriptors based on experimentally derived 
1-octanol-water partition coefficients to model the "hy­
drophobic effect", Hammett substitutent constants to 
model electronic effects, and a wide range of descriptors, 
from molecular weights to complex topological indices, to 
model steric interactions.1-3 These types of descriptors 
could generate a data set with 10's of different descriptors. 
The traditional statistical tool used in such analyses has 
been multiple linear regression. 

In recent years, the growth in importance of compu­
tational chemistry approaches has provided a plethora of 
molecular and atom-based descriptors that can and have 
been used in QSAR studies. These include descriptors 
derived from individual atomic partial charges, HOMO/ 
LUMO energies, and nucleophilic/electrophilic superde-
localizabilities, etc.4-6 Including these types of descriptors, 
one could easily end up with a data matrix of up to 100 
descriptors to analyze. Multivariate statistical techniques 
had to be adopted with so many descriptors. Using simple 
multiple linear regression with so many variables can cause 
severe problems because of chance correlations, collinear-
ity, and multicollinearity.7 Techniques such as principal 
components analysis, principal components regression, 
factor analysis, and partial least-squares analysis, which 
identify smaller numbers of uncorrelated underlying 
descriptors that can describe biological activity, have been 
increasingly applied.4,8-10 

The traditional and computational chemistry types of 
descriptors are, in general, scalar properties. However, 
the CoMFA approach of Cramer, Patterson, and Bunce 
looked at molecules in 3-D, from the viewpoint of the 
"receptor", and described the magnitude and directional 
preferences of electronic and steric interactions.11,12 The 
technique measured the interaction energy in terms of 
steric and electrostatic interactions between a methyl 
probe bearing unit positive charge at a series of regular 
grid positions around and through a series of molecules. 
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The molecules were previously overlaid/aligned to occupy 
the same position in space. This technique generates, 
typically, many thousands of descriptors (the interaction 
energies over the series of molecules at particular points 
in space) and necessitates the use of a multivariate data 
analysis technique; the method generally used is PLS.13 

One advantage of the CoMFA technique is that the results 
of the analysis can be mapped back into 3-D space 
providing a 3-D picture of the forces important in 
controlling biological activity. 

We have used the GRID force field14-17 to compute the 
interaction energy between a series of target molecules 
and a probe atom or group, over a regular 3-D grid both 
around and through the target molecules. GRID calculates 
the total energy of interaction, which is the sum of 
electrostatic, steric, and hydrogen-bonding terms. The 
probe can be chosen from a wide range of predefined probe 
molecules. The force field was originally developed to 
probe the interior of proteins for interaction sites useful 
for drug design. GRID has been used successfully to 
predict binding sites of small ligands in proteins,18 and it 
has been extended to evaluate properties of small mole­
cules. We have used the RS/1-table-based suite of 
statistical software to compile and manage the individual 
grids.19 We have analyzed data generated by GRID using 
PLS, as implemented inside the SIMCA multivariate 
analysis package.20 The analysis also included the more 
traditional CLOGP and CMR descriptors. The resulting 
model was used to identify relationships between the 
physicochemical properties and biological activity of a set 
of calcium-channel agonists. 

The discovery and the synthesis of methyl 2,5-dimethyl-
4-[2-(phenylmethyl)benzoyl]-lif-pyrrole-3-carboxylate(13) 
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Table 1. CLOGP, CMR, and Force of Contraction (ECeo) 
Measured Relative to BAY K 8644 for 36 Compounds Used in 
the QSAR Analysis 

,C02Me 

Table 2. Distribution of the Interaction Energy Ranges between 
the Hydroxyl Probe and the 36 Compounds at Each GRID Point 
in Space (which are each columns in the compiled RS/1 table) 

range intervals (.Emu ~ -Emm in number of columns/GRID 
each column, kcal/mol) points with range in the interval 

compd 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Mr 

R 

2-C1 
2-CF3 
2-OCHa 
2-H 
2-OCO(2'-OH-CeH6) 
2-CH3 
2-F 
2,4-Cl2 
2-1 
2-Br 
2-OCH2Ph 
2-Cl,4-N02 
2-CH2Ph 
2-Ph 
2-SCH2Ph 
2-SOCH2Ph 
2-S02CH2Ph 
2-CH2CH2Ph 
2-CH3,4-CHa 
2-SPh 
2-SOPh 
2-NHPh 
2-CH2(4'-N02Ph) 
2-CH2(2'-N02-Ph) 
2-S(4'-NOj-Ph) 
2-0(4'-N02-Ph) 
2-CH2(4'-NHi!-Ph) 
2-OS02(4'-Me-Ph) 
2-OPh 
2-NH-pyrid-2'-yl 
2-CH2CgHn 
2-NHC«Hu 
2-Br, 4-F 
2-CH2(4'-F-Ph) 
2-CHjPh, 4-F 
2-CH2(4'-F-Ph), 4-F 

1M Me 
H 

CLOGP 

2.63 
3.09 
2.03 
2.18 
4.10 
2.67 
2.34 
3.35 
3.04 
2.78 
3.80 
2.41 
4.01 
4.01 
4.61 
2.41 
2.16 
4.62 
3.17 
4.62 
2.18 
4.79 
3.84 
3.56 
4.46 
4.13 
2.87 
3.06 
4.21 
3.94 
5.32 
4.84 
2.92 
4.24 
4.25 
4.40 

CMR 

7.58 
7.60 
7.70 
7.08 

10.40 
7.58 
7.10 
8.07 
8.39 
7.86 

10.21 
8.30 

10.06 
9.60 

10.87 
10.90 
10.93 
10.52 
8.01 

10.40 
10.44 
9.96 

10.79 
10.78 
11.13 
10.47 
10.43 
10.62 
9.75 
9.75 

10.15 
10.06 
7.877 

10.08 
10.08 
10.09 

relative 
force (EC50) 

0.0943 
0.27 
0.0053 
0.059 
0.34 
0.14 
0.0093 
0.33 
0.22 
0.15 
1.13 
0.16 

35.5 
0.174 
2.89 
0.312 
0.021 
8.00 
0.0568 
2.57 
0.34 

18.91 
4.31 
2.90 
1.24 
0.96 
0.0457 
0.0072 
2.90 
7.70 

27.6 
27.6 
0.220 

14.0 
19.0 
19.0 

(FPL 64176, Chart 1) and analogs were recently de­
scribed.21 These represent the first examples of a new 
class of calcium-channel activators. The modulation of 
transmembrane calcium movement is an important area 
of current pharmacological research with applications in 
many therapeutic areas. The discovery of FPL 64176 was 
directly guided by a linear regression model, which showed 
the importance of lipophilicity and steric size to the 
observed activity. Thus, this data set provided a good 
vehicle for our study of the usefulness of GRID and SIMCA 
to drug design. We hoped the inclusion of more recently 
synthesized compounds would provide a deeper insight 
into the physicochemical factors controlling the activation 
of the calcium channel by this class of compounds. 

Materials and Methods 
Synthesis and biological testing protocols of the calcium-

channel agonists have been described elsewhere.21'22 In brief, 
the compounds were tested for their ability to increase cardiac 
contractility using guinea pig atria paced at 1 Hz. The inotropic 
potency of the compounds was measured as the concentration 
of drug to increase developed tension to 50 % of the isoprenaline 
maximum in the 1-Hz paced guinea pig atria. The results were 

0 up to 0.1 
0.1 up to 0.2 
0.2 up to 0.3 
0.3 up to 0.4 
0.4 up to 0.5 
0.5 up to 1.0 
1.0 up to 1.5 
1.5 up to 2.0 
2.0 up to 3.0 
3.0 up to 4.0 
4.0 up to 5.0 
5.0 up to 6.0 
6.0 up to 7.0 
7.0 up to 8.0 
8.0 up to 9.0 
9.0 up to 10.0 
total 

12818 
965 
196 
94 
96 
427 
193 
141 
165 
66 
146 
172 
81 
42 
16 
7 

15625 

reported relative to the EC50 of Bay K 8644, Chart 1, the standard 
calcium-channel agonist, and included in the QSAR analysis as 
log(relative inotropic potency). The macroscopic descriptors 
CLOGP and CMR were calculated using MEDCHEM, version 
3.54.M The compounds studied are shown along with CLOGP, 
CMR, and their inotropic EC50 data in Table 1. 

Molecular Alignment. The X-ray conformation observed 
for FPL 64176 (13) was used as the starting point for the 
construction of the 3-D structures of the 36 compounds. Sub-
stituent variations were built in CHEM-X34 using standard bond 
lengths and angles. The structures were not fully optimized. 
Full optimization would have introduced small differences in 
bond angles, bond lengths, and torsion angles to the fixed parts 
of the molecules in the test set, which would have introduced 
"noise" into the GRID analysis. Here, all of the molecules 
contained a common molecular fragment, the dimethyl-substi­
tuted pyrrole ring, known to be important for binding. The 
structural variation occurred on the phenyl ring at the position 
ortho to the linking keto group adjoining the pyrrole ring. Initial 
molecular alignment involved overlaying the pyrrole ring of each 
structure followed by conformational analysis of the side chain. 
Here, we fitted all the side chains to the conformation adopted 
by the benzyl side chain of FPL 64176, since this conformation 
was a low-energy one for the compound in question. The 
compound FPL 64176 is one of the most active compounds in the 
series, and so, the alignment approximates to the active-analog 
approach. Since it is not possible to deduce the bioactive 
conformation of FPL 64176, we have selected an arbitrary 
conformation (the X-ray conformation). 

The particular conformation of FPL 64176 chosen is irrevelant, 
as the frame of reference of the analysis is the molecule and not 
its absolute position in 3-D space. It is possible, and probably 
likely, that the "active" conformation of FPL 64176 is not that 
observed in the X-ray structure, but that does not matter to this 
analysis. If we had chosen another conformation of the benzyl 
side chain, since our alignment rules were the same, we believe 
the resulting statistical analysis would have been virtually 
identical. Each GRID point in space will become a descriptor 
variable in the PLS analysis and be represented by a column in 
the input table. A global rotation of all the varying substituents 
of the test set would correspond to permuting the order in which 
the descriptors/columns appear in this table. (This assumes that 
at the new x,y, and 2 positions, each GRID point lies in the same 
position relative to the substituent as previously. It also assumes 
that the nonrotated parent part of the molecule offers a constant 
interaction across the set of compounds.) Permuting the columns 
of a table has no effect upon extraction of principal components 
or PLS components. In a recent paper, Klebe and Abraham 
demonstrated for a set of inhibitors of thermolysin and human 
rhinovirus 14, where protein-ligand complex crystallographic data 
provided information on the true binding conformation, that 
alignments based on a theoretical binding conformation gave 
CoMFA models of equal or superior predictive power compared 
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Table 3. PLS Regression Models for the Full 36-Compound Data Set" 

block variances PLS 1* PLS 2 PLS 3 PLS 4 overall r2 

model 1 r2 = 0.69 
CLOGP = 1.0 
act = 1.0 

model 2 r2 = 0.42 n/s n/s n/s 0.42 
GRID = 1458 
act = 1.0 

model 3 r2 = 0.42 n/s n/s n/s 0.42 
GRID = 1458 
CLOGP = 1 
CMR = 1 
act = 1 

model 4 r2 = 0.60 r2 = 0.71 r2 = 0.77 r2 = 0.86 0.86 
n/s 

GRID = 1 
CLOGP = 1 
CMR = 1 
act = 1 

0 n/s, not significant by cross-validation (5% level); PRESS > LIMIT (0.9025). * PLS 1, the first PLS component, and PLS 2, the second 
PLS component, etc. 

Table 4. PLS Regression Models for the Full 36-Compound 
Data Set Showing the Effect of Changing the Relative Scaling of 
the GRID Block vs the Macroscopic Descriptors" 

ratio variances 
(GRID/log 

P, etc.) 

10:1 
5:1 
3:1 
2:1 
1:1 

0.5:1 
0.33:1 
0.2:1 
0.1:1 

PLS1 

0.6478 
0.5963 
0.5146 
0.4554 
0.4268 
0.4316 
0.4337 
0.4349 
0.4355 

PRESS 

PLS 2 

0.9912, 
0.8785 
0.8742 
0.8973 
0.8515 
0.8506 
0.8595 
0.8668 
0.8707 

n/s 

PLS 3 

0.9869, n/s 
1.1535, n/s 
1.0060, n/s 
1.0692, n/s 
1.2799, n/s 
0.9846, n/s 
0.9643, n/s 
0.9554, n/s 
0.9511, n/s 

PLS 4 

0.9869 
0.8485 
0.8114 
0.7765 
0.7895 
0.8044 
0.8115 
0.8144 

overall 
PRESS 

0.6478 
0.5160 
0.3817 
0.3315 
0.2821 
0.2854 
0.2891 
0.2923 
0.2937 

« n/s, not significant (5% level); PRESS > LIMIT (0.9025). 

to those based on the experimental binding conformation.24 The 
active-analog approach assumes that for compounds to be active 
they should adopt a similar conformation to the most active of 
the series.26 We hypothesize that compounds that adopt different 
binding modes are likely to be observed as outliers in x-y 
correlation space in this type of analysis. Until a 3-D QSAR 
analysis becomes available where X-ray data on protein-ligand 
complexes are also available on all the cases studied, we will not 
be able to test this hypothesis. 

Charges. The GRID-defined atomic charges are assigned on 
the basis of atom types. They are insensitive to changes in 
structure in small molecules, e.g., changing a substituent on a 
phenyl ring does not change the charges on the ring atoms. 
Therefore, the GRID charges were replaced with MNDO/PM3 
Mulliken charges, calculated using MOP AC 5.0 running on a 
Convex C220 minisupercomputer. MOP AC charges would give 
more representative charges for small molecules. Previously, we 
have used Gasteiger charges, but the use of MOPAC-derived 
charges should give a better representation of inductive and 
mesomeric electronic effects in the molecules under study. 

Probes. An alkyl hydroxyl probe was selected as the probe 
molecule, as this would provide information on electrostatic 
interactions and hydrogen-bond donation and accepting ability. 
It also has a size, therefore generating steric information. We 
decided that the nature of the probe was unimportant as long as 
it could interact via all mechanisms. It is possible that a probe 
also bearing a formal charge would put a more appropriate 
emphasis upon electrostatic interactions, and GRID affords the 
possibility of defining custom probes if necessary. 

During the GRID calculations, the bulk dielectric was set to 
4.0, representing the estimated dielectric of the active site of a 
receptor. In the preliminary work, we used a bulk dielectric of 
80.0, but we decided using the more realistic lower value would 
give a better representation of hydrophobic effects. Setting the 
dielectric to 4.0 would also increase the contribution of the 
electrostatic term and provide a good compromise between 

electrostatic and steric terms. If the dielectric had been set lower 
than 4.0, then the electrostatic term would start to dominate. 

The interaction energies between the set of test molecules and 
the hydroxyl probe were measured at 1-A spacings over a 25-A 
cubic GRID generating 15 625 points for each molecule. The 
GRID spacing should be as small as is practicable to use. In 
CoMFA work, GRID spacings of 2 A are often used. As long as 
the increased redundancy in the data set can be adequately 
removed, smaller grid spacing gives less sparse, more informative 
regression maps. 

Map Data Preparation. The GRID maps were compiled 
into a table in RS/1, each column representing a point in space 
and each row a compound in the test set, generating a 36-row X 
15625-column table. The *, y, and z coordinates of the GRID 
points were written as the column titles of this table. The column 
titles provide the key to collapsing the dimensionality of the 
GRID block, to removing redundant information, and to regen­
erating the original GRID later in the analysis for the display of 
results. The negative energy values generally ranged from 0 to 
-9 kcal/mol but the positive values from 0 to 50.0 kcal/mol (the 
cutoff value set by GRID). As extraction of PLS components is 
scale-dependant, this would unduly bias the analysis to the steric 
terms.26 We therefore scaled all positive energies by 12.5 so they 
would only cover the range 0-4.0 kcal/mol. 

To analyze the information content of the RS/1 map data 
table, a table was constructed showing the distribution of column/ 
GRID point ranges, Table 2. Analysis of this distribution table 
demonstrated that the compiled GRID map data table contained 
many GRID points/columns at which the probe showed little or 
no variation in interaction energy across the set of test compounds. 
This was because: (a) a very large grid was used; therefore, many 
GRID points were so far away from all the molecules that the 
interaction energy between the probe and all molecules was 0 or 
nearly 0 kcal/mol; (b) the common parts of the molecule provide 
a constant interaction with the probe; and (c) as part of the 
molecular volume is common to the whole set, there are regions 
of space where the probe is inside the van der Waals surface of 
the whole set, so the interaction energies were constant at 4.0 
kcal/mol (after scaling). 

Inclusion of these redundant columns would grossly affect the 
chance of extracting a useful PLS model. A table was constructed 
in RS/1 that was a subset of the 15 625 master table that contained 
columns/GRID points where the range of energy values (Bnax -
Emin) was greater than 0.2 kcal/mol, generating a 1842-column 
table. This cutoff was arbitrary, and we could have equally used 
a higher cutoff, e.g., at a 0.3 or 0.4 kcal/mol range, without losing 
too much x-block information. Thus, only around 10% of the 
data contained any potentially useful information. The whole 
molecule descriptors CLOGP and CMR were added to this table 
with the activity data to generate a 1845-column X 36-row data 
table for analysis. 

Statistical Analysis. The PLS routine implemented in 
SIMCA, version 4.4, was used. In the version available to us, up 
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Table 5. PLS Regression Models for the Full 36-Compound Test Set Showing the Effect of Removing Redundant x-Descriptors Using 
VINFM0 

PRESS and Ir2 

VINFM cutoff 

1845 cols with VINFM > 0.0 

795 cols with VINFM > 0.2 

511 cols with VINFM > 0.4 

391 cols with VINFM > 0.6 

309 cols with VINFM > 0.8 

205 cols with VINFM > 1.0 

PLS1 

0.4268 
r2 = 0.601 
0.4261 
r2 = 60.2 
0.4252 
r2 = 0.602 
0.4242 
r2 = 0.603 
0.4246 
r2 = 0.602 
0.4217 
r2 = 0.605 

PLS 2 

0.8515 
r2 = 0.714 
0.8512 
r2 = 0.715 
0.8469 
r2 = 0.718 
0.8472 
r2 = 0.718 
0.8442 
r2 = 0.717 
0.8510 
r2 = 0.719 

PLS 3 

1.2799, n/s 
r2 = 0.786 
1.287, n/s 
r2 = 0.788 
1.2915, n/s 
r2 = 0.791 
1.2888, n/s 
r2 = 0.791 
1.2865, n/s 
r2 = 0.793 
1.2935 
r2 = 0.78 

PLS 4 

0.777 
r2 = 0.86 
0.788 
r2 = 0.858 
0.7895 
r2 = 0.857 
0.7774 
r2 = 0.858 
0.7913 
r2 = 0.854 
0.8560 
r2 = 0.831 

PLS 5 

1.1593, n/s 

1.096, n/s 

1.0162, n/s 

0.9490, n/s 

0.9336, n/s 

0.9322, n/s 

0 In each case, the block variances were scaled to 1.0. n/s, not significant (5% level); PRESS > LIMIT (0.9025). 
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Figure 1. Plot of the x-scores on PLS component 1 vs component 
2, tl vs tl for the 36-compound block-scaled model. This 
illustrates how the compounds are spread over the x-space of the 
first two components most important in describing biological 
activity. 

ypred 

•31 

•22 

«B5. 36 
^29 •30* 3" » i 3 

•15 ' 1 8 

•20 

7»»19 1 ? 
33»?. 

•25 

•26 
21 « U 

e 
5 

•23 

, • 1 6 

• 3 

— » 2 # -
-0.5 0.0 

Figure 2. Plot of predicted logio relative force vs observed logio 
relative force for the 36-compound block-scaled model. 

to a 60-case X 5600-variable matrix could be analyzed. After 
each component had been extracted, the significance of that 
component to the model and the overall model significance were 
checked by cross-validation. Using as default seven groups, which 
with 36 cases approximated to leave-five-out approach, the 
significance was tested with the PRESS statistic. The prediction 

error sum of squares (PRESS) is the squared differences between 
observed and predicted values when the objects i are kept out 
of the model for each y variable m: 

PRESS = ^Tim(Siri •y- r 
Jim1 

For each PLS component, the PRESS/SS was calculated, where 
SS is the residual sum of squares of the previous dimension, and 
the (PRESS/SS)m was calculated for eachy variable. When the 
PRESS/SS (total or for any dimension) is smaller than a 
significance LIMIT (5 % level), the tested dimension is considered 
significant. 

The use of cross-validation to test the model significance has 
many advantages over using distribution-based tests of model 
significance such as F-tests. Cross-validation always tests the 
model in prediction, and as we want to use the model to guide 
the design of new compounds, then this is preferable. Also, the 
use of cross-validation does not impose any assumptions upon 
the distribution of errors in the model, which may not be valid 
with this type of data.27 (Most statistical tests of significance 
assume errors follow a normal distribution.) 

Data Block Scaling. The effect of changing the variance of 
the GRID block of descriptors relative to the macroscopic 
descriptors was examined. The block variance of the GRID block 
is calculated by summing the individual column variances for all 
the m columns for the i cases in the GRID block: 

block var = ^ r ^ i ( x - x,)2/(i - 1) 

Block scaling to unity was achieved by dividing the interaction 
energy for every case in every column by the total block standard 
deviation: 

scaled values = xliBl/block SD 

for i cases and m columns in the block. 
Here, the block variance for the 1842 GRID columns was 1458, 

so to scale the block variance to unity, each interaction energy 
for all cases in all columns in the block was divided by V1458, 
i.e., 38.18. The scaling of thex-blocks is easily achieved in SIMCA 
by defining columns in the block and assigning a scaling "weight" 
to that block of 1/38.18, i.e., 0.062. 

The PLS weights, which show the importance of the original 
variables to each PLS component, and the regression coefficients, 
which show the importance of the original variables to the 
complete multicomponent model, were extracted from the 
SIMCA output and used to recompile maps in RS/1. The points 
in space that were not included in the PLS analysis had their 
weights/regression coefficients set to zero. The map tables were 
output in a format readable by the molecular modeling program 
CHEM-X and displayed on an Evans and Sutherland PS300 
graphics terminal supporting stereo. 

Results 
PLS analysis is sensitive to the scaling of the x-block 

descriptors. Because the units of the GRID columns are 
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Figure 3. Negative regression coefficients (blue) and positive regression coefficients (orange) superimposed on the most active compound 
(13) and least active compound (28) of the 36-compound block-scaled model. 

Figure 4. Negative PLS weights (blue) and positive PLS weights (orange) of the GRID points onto PLS 1 superimposed onto the 
most positively influential (high t l vs ul) compound (13) and most negatively influential (low tl vs ul) compound (3) of the 36-
compound block-scaled model. The macroscopic descriptor CLOGP weights heavily, also, on this component. The component is 
dominated by positive weights (at the contouring level shown no negative weights are displayed), regions in space where it is favorable 
to place lipophilicity. 

identical, i.e., kcal/mol, the GRID columns were not 
autoscaled. Autoscaling, which sets each column's variance 
to unity, would put undue weight on columns containing 
little variation in interaction energy over the test set of 
compounds. But inclusion of one whole-molecule de­
scriptor such as CLOGP along with 100's or 1000's of 
columns of GRID information requires careful attention 
to scaling. Table 3 shows the effect of changing the relative 
scaling of the variance of the GRID block to CLOGP and 
CMR column variances. 

Inclusion of CLOGP and CMR with the 1842 columns 
of GRID information without block scaling, Table 3, model 
3, has no effect upon the model obtained when compared 
to the model extracted from just the GRID information, 

Table 3, model 2. Although CLOGP alone describes 69 % 
of the y-block variation, without block scaling, the variable 
does not contribute significantly to the model. But when 
the GRID block variance is scaled to give the total variance 
of all columns of 1.0, the same as the CLOGP column, the 
complete model now explains 86% of the activity data in 
four PLS components, Table 3, model 4. This shows that 
in this data set where lipophilicity is known to be important 
in controlling the observed inotropic potency, the best 
PLS model can only be identified after appropriate scaling. 
A similar approach has recently been used by Silipo28 and 
McFarland29 for the inclusion of macroscopic descriptors 
with CoMFA data. Kim has demonstrated that in some 
cases lipophilic effects can be parameterized directly from 
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Figure 5. Plot of (x/y)-scores on PLS 1, t\ vs ul for the 36-
compound block-scaled model. 

the molecular field of CoMFA.30 But for this data set 
where lipophilicity is known to be important in controlling 
biological activity, the best model can only be extracted 
by explicitly including the macroscopic descriptors CLOGP 
and CMR with the GRID data with appropriate block 
scaling. 

The questions now arise, how does one know what the 
relative scaling between the blocks should be and how 
does this effect the model extracted? Table 4 shows how 
the model is affected by altering the relative scaling 
between the GRID and CLOGP x-blocks. The choice of 
1:1 for the relative scaling of the GRID block to the variance 
of the macroscopic descriptors (which were each scaled to 
unit variance) was arbitrary. But it did allow both the 
macroscopic descriptors and the GRID information to 
contribute to the model. The importance of scaling down 
the variance of the GRID block drastically, from 1458:1 
as in the raw data to 10:1, shows steady improvement in 
the quality of the models. Below 2:1, the model is optimal. 
Once the variance ratio is approximately below 2:1, a stable 
model results. 

Recently, a number of papers have described the 
improvements in model predictability by reducing the 

dimensionality of the x-block, i.e., by removing redundant 
data that contributes little to the x-y correlation.31"33 

SIMCA computes a diagnostic called the variable influ­
ence, which shows the influence on y of every term in the 
model. This is computed for each component and cu­
mulatively for the whole PLS model. For a PLS dimension, 
the variable influence is given by the squared PLS weight 
of that term multiplied by the percent explained sum of 
squares of that PLS dimension. The cumulative variable 
information is the sum of VINFM over all dimensions. 

GRID points that are not important to y can be identified 
by extracting PLS components without cross-validation 
(generally extracting one or two more than are identified 
by cross-validation) and reading the cumulative VINFM 
data generated. GRID points with very small cumulative 
VINFM values are of little importance in controlling y 
and do not model x, whereas GRID points with large 
cumulative VINFM values are most important in the PLS 
model. The points in space with very low VINFM values 
can be removed from the model development process 
without affecting the fitting to y. Table 5 shows the results 
of using VINFM to cut the dimensionality of the model 
from 1842 columns. As can be observed, the model is 
virtually identical once the dimensionality has been 
reduced from 1842 down to 205 columns. This demon­
strates that the model contains many GRID points that, 
although they contain x-block information, contain little 
information useful in the x-y correlation. The PRESS 
statistics for the first four components, which were 
significant in the full model, are slightly improved in the 
reduced models. The PRESS for the fifth component 
markedly decreases as the dimensionality is reduced but 
in this work still does not reach a level of significance 
where it could be included. Thus, strong signals in the 
data are little affected by the noise reduction, but weaker 
signals may become significant as the dimensionality is 
reduced. 

Discussion 
Since the mechanism of biological action might differ 

between different types of compounds, it is difficult to 
construct model QS AR's that apply to structurally diverse 
compounds. One way to ensure that the compounds are 
structurally homogeneous is to plot the first few PLS or 

Figure 6. Negative PLS weights (blue) and positive PLS weights (orange) of the GRID points on PLS 2 superimposed onto compound 
31 (high t2 vs u2) and compound 28 (low 12 vs u2) of the 36-compound block-scaled model. The model identifies unfavorable interactions 
for large side chains. 
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Figure 7. Plot of (x/;y)-scores on PLS 2, tl vs u2 for the 36-
compound block-scaled model. 

PC A score dimensions of the molecular descriptors. These 
plots, commonly denoted t l vs £2 for the first two 
dimensions, should be free of groupings. In Figure 1, we 
have plotted 11 vs tl, the scores of the 36 compounds on 
the first two components of the four-component block-
scaled model. It does show two groupings and suggests 
two different types of compounds that should be treated 
separately. A close examination of the compounds in the 
two groups reveals no apparent difference other than their 
size. The grouping therefore comes from small hydrophilic 
compounds (upper left corner) and large compounds. We 
believe that the grouping comes from a lack of "medium-
sized compounds" and that here all the compounds can be 
treated as structurally homogeneous. 

The four-PLS-component model with block scaling of 
the 36-compound set, Table 3, model 4, describes 86% of 
the variation in logio force observed; a plot of y vs 
y-predicted is shown in Figure 2. We can estimate if the 
model is overfitted, too many PLS components, or 
underfitted, too few PLS components, by comparing the 
square of the measurement error to the residual variation 

around the model, (y - yPred)2- In this case, assuming a 
measurement error of 2-fold (0.303 in logio units) and the 
(y-ypred)2 of 0.14, we find that the squared measurement 
error, 0.0908, is slightly less than the (y - ypr«i)2. This 
indicates that no significant under- or overfit is present. 

The contribution of the GRID data to model 4 is shown 
in Figure 3, which shows the regression coefficients for 
each GRID point mapped back into 3-D space. This is 
displayed with the structures of compound 13 and 28, 
representatives of the most active and least active com­
pounds studied, respectively. The overall regression 
coefficient map represents a composite picture of the four-
PLS components extracted for the 36-compound model. 
A number of discrete regions in space are mapped out by 
positive and negative regression coefficient contours. What 
do the negative and positive regions mean in terms of the 
interaction energies at those positions? A negative re­
gression coefficient/PLS weight indicates that at that 
position in space as the interaction energy between the 
probe and the series of molecules gets more negative the 
compounds become more active. This could be due to a 
favorable electronic/hydrogen-bonding interaction with 
the receptor being identified or an unfavorable steric 
interaction. Conversely, a positive regression coefficient/ 
PLS weight shows that as the interaction energy across 
the set becomes more positive the observed binding energy 
becomes higher. This could be due to an unfavorable 
electrostatic interaction with the receptor, or a region in 
space where it is favorable to place steric bulk being 
identified. 

A four-component PLS model indicates that four 
underlying statistical/physical properties have been iden­
tified as important in describing y. The overall GRID 
regression map, though, shows many discrete mapped 
regions. In the simplest case for a four-component PLS 
model, one could expect four positive and their respective 
four negative mapped regions, but due to collinearity in 
the data set, more are often observed. The question is, 
how many of these mapped regions offer independent 
useful information and which are they? This problem is 
twice as complicated in CoMFA, as the electrostatic and 

Figure 8. Negative weights (blue) and positive weights (orange) of the GRID points onto PLS 3 superimposed onto compound 21 
(high t3 vs u3) and compound 28 (low £3 vs u3) of the 36-compound block-scaled model. This identifies that benzyl substituents and 
their isosteres are more active than phenethyl isosteres. 
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Figure 9. Plot of the (x/y)-scores on PLS 3, t3 vs u3 for the 
36-compound block-scaled model. 

steric information is shown on two separate maps. To 
answer this question, we inspected the individual PLS-
component weighting maps. Each PLS component iden­
tifies a separate "underlying statistical physical property" 
that is important in determining biological activity. GRID 
points with high PLS weights are important in defining 
that component, i.e., are highly collinear with that 
component and therefore contain similar information. 
Therefore, all mapped regions that weight onto a single 
PLS component should have a single statistical/physical 
interpretation. The interpretation of the PLS weighting 
maps was aided by examining them with a plot of the 
scores (t's) of the compounds on the PLS x-component vs 
the scores of the y/y's on the PLS y-component (u's). 
Compounds that appear at the positive and negative ends 
of the t/u axis are those whose GRID fields are most 
important in defining that component. The weightings 
maps were displayed over the structures of the two 

compounds with the most negative t/u and the most 
positive t/u values, compounds that are most influential 
in defining that component. 

PLS 1, the first PLS component, for model 4 describes 
6 1 % of the variance in biological activity, 84% of the 
variance of the CLOGP descriptor, and 67% of CMR 
weight onto this component. Figure 4 shows the weights 
of each GRID point that also load upon PLS 1, which was 
interpreted in conjunction with a plot of tl vs u l , Figure 
5. The GRID regions mapped therefore show points in 
space where it is favorable to place a bulky lipophilic 
substituent. PLS 1 is dominated by regions of positive 
coefficients. As can be seen from Figure 4, the benzyl side 
chain of compound 13, a representative which scores on 
the high positive t l / u l axis, fills this region of positive 
contours. This represents regions in space from which 
the -OH probe is repelled, correlating with high biological 
activity. On the contrary, the methoxy side chain of 
compound 3, a representative of a compound scoring low 
negative on the £ l /u l axis, does not enter this volume in 
space. 

Figure 6 shows the weights of GRID points onto PLS 
2, the second PLS component, and Figure 7 shows a plot 
of £2 vs u2. The remaining 11% of CLOGP and 30% of 
CMR load onto this component, the CMR term with a 
negative weighting. The side chain of compound 28, 
scoring low negative on the tl/ul axis, fills a region of 
negative contours, which dominate this component. Many 
of the smaller substituents score on the positive end of 
this component. The component shows that too large a 
substituent can be detrimental to activity. 

Figure 8 shows the weighting of GRID points onto PLS 
3, and Figure 9 shows a plot of £3 vs u3. This shows that 
benzyl substituents and their isosteres have favorable 
positive contours around the region of space they occupy, 
while the region of the aromatic ring of phenyl and 
phenethyl isoteres is filled with negative contours, which 
is unfavorable for this steric interaction. 

Figure 10. Negative weights (blue) and positive weights (orange) of the GRID points onto PLS 4 superimposed onto compound 16 
(high (4 vs u4) and compound 26 (low !4 vs u4). Inspection of this map together with Figure 11 suggests that para substitution on 
benzyl substituents could have a small unfavorable effect upon activity. 
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Figure 11. Plot of the (x/y)-scores on PLS 4, t4 vs u4 for the 
36-compound block-scaled model. 

Figure 10 shows the weightings of GRID points onto 
PLS 4, which explains an extra 7.3% of the y variance 
remaining. Inspection of this with Figure 11, which shows 
a plot of £4 vs u4, shows that benzyl and phenethyl isosteres 
containing para substituents appear to have a small 
unfavorable effect upon biological activity. This compo­
nent could also be rebalancing some residual variation 
introduced by the fitting of the previous components. 

The overall regression model therefore shows that 
lipophilic benzyl substituents are the most active com­
pounds and small hydrophilic substituents are the least 
active. Of the larger substituents, benzyl substituents and 
their isosteres are more active than phenethyl substituents 
and their isosteres once log P has been accounted for. Also, 
para substituents on benzyl or phenethyl compounds have 
a small unfavorable effect upon the biological activity once 
their lipophilicity has been accounted for. 

Conclusion 

We have developed a system for 3-D QSAR on the basis 
of the programs' GRID, RS/1, and SIMCA. This system 
offered the flexibility to investigate the effects of data 
preprocessing on the statistical analysis, and we have shown 
the importance of removing redundant variables that 
contain no information and the importance of variable 
scaling. We have demonstrated how interpretation of the 
resulting PLS model can be aided not only by examining 
the overall regression contour maps but also by examining 
the individual PLS weighting maps. These were used with 
plots of t's vs u's which show the inner correlation of the 
extracted PLS x-components (t's) and PLS y-compo-
nents (u's). The interpretation via weighting maps would 
be certainly recommended in any 3-D QSAR analysis where 
more than one field source is used, for instance, in CoMFA 
work where the steric and electrostatic fields are treated 
separately. 

Acknowledgment. We wish to thank Dr. Darren 
Flower for writing programs used in this work and all the 
staff at Umetri AB for many helpful discussions. 

References 
(1) Hansch,C.;Fujita,T. <r-ir-p-Analysis: A Method for the Correlation 

of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 
1964, 86, 1616-1626. 

(2) Verloop, A.; Hoogenstraaten, W.; Tipker, J. Development and 
Application of New Steric Substituent Parameters in Drug Design. 
In Drug Design; Ariens, E. J.; Ed.; Academic Press: New York, 
1976; Vol. VII. 

(3) Balaban, A. T.; Chiriac, A.; Motoc, I.; Simon, Z. Steric Fit in 
Quantitative Structure-Activity Relations: Springer-Verlag: Ber­
lin, 1980. 

(4) Ford, M. G.; Greenwood, R.; Turner, C. H. The Structure-Activity 
Relationships of Pyrethroid Insecticides. 1. A Novel Approach 
Based on the Use of Multivariate QSAR and Computational 
Chemistry, Pestic. Sci. 1989, 27, 305-326. 

(5) Ford, M. G.; Livingstone, D. J. Multivariate Techniques for 
Parameter Selection and Data Analysis Exemplified by a Study of 
Pyrethroid Neurotoxicity. Quant. Struct.-Act. Relat. 1990,9,107-
114. 

(6) Boel, M. Theoretical Investigation on Steroid Structure and QSAR. 
In Molecular Structure and Biological Activity of Steroids; Boel, 
M., Duax, W. L., Eds.; CRC Press: Boca Raton, FL, 1992. 

(7) Topliss, J. G.; Edwards, R. P. Chance Factors in Studies of 
Quantitative Structure-Activity Relationships. J. Med. Chem. 1979, 
22,1238-1244. 

(8) Jonsson, J.; Eriksson, L.; Sjostrom, M ; Wold, S. A Strategy for 
Ranking Environmentally Occurring Chemicals. Chemom. Intell. 
Lab. Syst. 1989, 5,169-186. 

(9) Eriksson, L.; Jonsson, J.; Sjostrom, M.; Wold, S. A Strategy for 
Ranking Environmentally Occurring Chemicals. Part ii. An 
Illustration with Two Data Sets of Chlorinated Aliphatics and 
Aliphatic Alcohols. Chemom. Intell. Lab. Syst. 1989, 7,131-141. 

(10) Eriksson, L.; Jonsson, J.; Hellberg, S.; et al. Multivariate Quan­
titative Structure-Activity Relationships for Halogenated Aliphat­
ics. Environ. Toxicol. Chem. 1990, 9, 1339-1351. 

(11) Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparitive Molecular 
Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids 
to Carrier Proteins. J. Am. Chem. Soc. 1988,110, 5959-5967. 

(12) Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Recent Advances in 
Comparative Molecular Field Analysis (CoMFA). Prog. Clin. Biol. 
Res. 1989, 291,161-165. 

(13) Wold, S. Partial Least Squares Analysis. In 3-D QSAR in Drug 
Design, Theory, Methods and Application; Kubinyi, H., Ed.; 
ESCOM Science Publishers: Leiden, Holland, 1993. 

(14) Goodford, P. J. A Computational Procedure for Determining 
Energetically Favorable Binding Sites on Biologically Important 
Macromolecules. J. Med. Chem. 1985, 28, 849-857. 

(15) Boobyer, D. N. A.; Goodford, P. J.; McWhinnie, P. M.; Wade, R. 
C. New Hydrogen Bond Potentials for Use in Determining 
Energetically Favorable Binding Sites on Molecules of Known 
Structure. J. Med. Chem. 1989, 32, 1083-1094. 

(16) Wade, R. C; Clark, K. J.; Goodford, P. J. Further Development of 
Hydrogen Bond Functions for Use in Determining Energetically 
Favorable Binding Sites on Molecules of Known Structure. 1. 
Ligand Probe Groups with the Ability to Form Two Hydrogen 
Bonds. J. Med. Chem. 1993, 36, 140-147. 

(17) Wade, R. C; Goodford, P. J. Further Development of Hydrogen 
Bond Functions for Use in Determining Energetically Favorable 
Binding Sites on Molecules of Known Structure. 2. Ligand Probe 
Groups with the Ability to Form More Than One Hydrogen Bond. 
J. Med. Chem. 1993, 36,148-156. 

(18) Itzstein, M.; Yang, W. W.; Kok, G. B.; et al. Rational Design of 
Potent Sialidase-based Inhibitors of Influenza Virus Replication. 
Nature 1993, 363, 418. 

(19) RS/1; BBN Software Products, 10 Fawcett St., Cambridge, MA 
02238. 

(20) SIMCA 4.4; developed and distributed by Umetri AB, Umea, 
Sweden. 

(21) Baxter, A. J. G.; Dixon, J.; Ince, F.; Manners, C. N.; Teague, S. J. 
Discovery and Synthesis of Methyl 2,5-dimethyl-4-[2-(phenylm-
ethyl)benzoyl]-ltf-pyrrole-3-carboxylate (FPL 64176) and 
Analogues: the First Examples of a New Class of Calcium Channel 
Activator. J. Med. Chem. 1993, 36, 2739-2744. 

(22) Kennedy, R. H.; Seifen, E. Stimulation Frequency Alters the 
Inotropic Response of Atrial Muscle to Bay K-8644. Eur. J. 
Pharmacol. 1985,107, 209-214. 

(23) MEDCHEM, version 3.54; Daylight CIS: USA, 1993. 
(24) Klebe, G.; Abraham, U. On the Prediction of Binding Properties 

of Drug Molecules by Comparative Molecular Field Analysis. </. 
Med. Chem. 1993, 36, 70-80. 

(25) Dammkoeler, R. A.; Karasek, S. F.; Shands, E. F. B.; Marshall, G. 
R. Computer-Aided Drug-Design: the Active-Analog Approach. 
J. Comput.-Aided Mol. Des. 1989, 3, 3-21. 

(26) Cocchi, M.; Johansson, E. Amino Acids Characterization by GRID 
and Multivariate Data Analysis. Quant. Struct.-Act. Relat. 1993, 
12, 1-8. 

(27) Wold, S. Cross-Validatory Estimation of the Number of Compo­
nents in Factor and Principal Components Models. Technometrics 
1978, 20, 397-404. 

(28) Greco, G.; Novellino, E.; Silipo, C; Vittoria, A. Study of Benzo­
diazepines Receptor Sites Using a Combined QSAR CoMFA 
Approach. Quant. Struct.-Act. Relat. 1992,11, 461-477. 

(29) McFarland, J. W. Comparitive Molecular Field Analysis of Anti­
coccidial Triazines. J. Med. Chem. 1992, 35, 2543-2550. 



972 Journal of Medicinal Chemistry, 1994, Vol. 37, No. 7 Davis et al. 

(30) Kim, K. H. A Novel Method of Describing Hydrophobic Effects 
Directly from 3-D Structures in 3D-Quantitative Structure-Activity 
Relationships. Med. Chem. Res. 1991,1, 259-264. 

(31) Cruciani, G.; Baroni, M.; Clementi, S.; Constantino, G.; RiganeUi, 
D.; Skagerberg, B. Prediction Ability of Regression Models, Part 
1. The SDEP parameter. J. Chemom. 1992, 6, 335-346. 

(32) Baroni, M.; Clementi, S.; Cruciani, G.; Constantino, G.; RiganeUi, 
D.; Oberrauch, E. Prediction Ability of Regression Models, Part 2. 

Selection of the Best Predictive PLS Model. J. Chemom. 1992,6, 
347-356. 

(33) Allen, M. S.; LaLoggia, A. J.; Dorn, L. J.; et al. Predictive Binding 
of Beta-Carboline Inverse Agonists and Antagonists via the 
CoMFA/GOLPE Approach. J. Med. Chem. 1992, 35, 4001-
4010. 

(34) CHEM-X, developed and distributed by Chemical Design Ltd., 
Chipping Norton, Oxon., U.K. 


